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• of wave propagation, diffusion, and damage accumulation in
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MECHANICS OF COMPOSITE MATERIALS

• 1. RESEARCH OBJECTIVES

Research under the subject Contract represents a continuing effor t3

to construct viable nonlinear micro-mechanical continuum models to pre-

dict the therniornechanical response of advanced composite materials. The

thermomechanical processes under stud y include:

Linear and nonlinear wa ve propagation

Linear and nonlinear diffus ion (thermal and hygrothe rmal)

Mechanisms and accumulation of damage .

The thermomechanical measures include:

Global stress, deformation, temperature, internal energy fields

Local stress, deforma tion, temperature, internal energy fields

• • Re sidua l properties of damaged composites.

2. RESEARCH PROGRESS

2. 1 Discus sion

Excellent progress has been made to date in modeling both laminated

and fibrous composites as homogeneous continua with microst ructure .  The

resulting theory is gene rally referred  to as a “Theory of Interacting Continua~

or a “Mixture Theory with Microstructure ”. In contrast to classical theorie s

3Previous work was conducted unde r AF-AFOSR Grant 70-1975 and AF-AFOSR
Contract 75-2870.
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IL
with similar titles , the gove rning equations are completely specified by a

knowledge of the initial microstructural geometry of the composite, the

component constitutive relations , and the component interface ph ysics.

In fu r the r contrast to classical theorie s, the current model provides infor-

mation on stress, displacement, strain, tempe rature , and internal ene rgy

fields within the microcomponents as well as global measures of these

quantities. The present theory also accounts for debonding at the micro-

component interfaces - a basic damage mode . Models incorporating crack

distributions throughout the constituents are under study.

The most gene ral mathematical model cons idered to date is a non-

lineai , anisotropic , the rmomechanical mixture theory with micros t ructure .

Particular, simplified forms of this model ha ve been developed to cove r

special cases of composite geometry, material constitutive relations , and

physical processes or problems. Iu all cases , however, theoretical

construction is based upon one of two basic methods which are in turn

based upon an asymptotic scheme in which dominant signal wavelengths

associated with the physical process are assumed to be large in comparison

with typ ical composite microdimensions. An explana tion of the foregoing

construction methods, as well as a number of interesting examples , can

be found in Appendix II.

The composites studied using the above asymptotic technique range

from elementary laminated to complex three-dimensional advanced

a
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composites. In addition to cer tain model composites, mate r ials have

included quar tz  phenolic, carbon phenolic, carbon ca rbon, and graphite

epoxy. Representative problem areas include nose tips , heat shields,

eng ine blade s , nozzles , and hygrothermal environments.

Cases complete d and in publication thus far  include:

A general theory for wave propagation in linear elastic and

linear- viscoelastic laminated composites with isotrop ic laminae;

• A general theory for linea r thermal diffusion in laminated

composites with isotropic laminae;

• A “firs t  order ” theo ry for linear wave propagation in anisotropic

lamina tes with oblique layup;

“First order ” theories for wave propagation , diffusion, and

debonding in unidirectional fibrous composite s with cylindrical fibers of

arbi trary cross section;

• “First  order ” nonlinear , anisotropic and isotropic , thermo-

dynamic theories for wave propagation, diffusion, and dam age accumulation

due to debonding in both laminated and f ibrous composites of specific types.

In the general linear cases above, a hierarch y of models is system-

atically defined by the order of the truncation of the asymptotic sequence

involved in the theoretical construction process. Retention of all terms

In this sequence leads to a formally exact theory. Retention of only the

zeroth-order plus f i r s t  order terms results in a so-called “first order ”

3



theory which can be cast in the fo rm of a mixture theory. The latter

usually constitutes an adequate micromechanical model of a composite

for engineering purposes. All nonlinear models are “first order” theories.

The first order models for laminates and fibrous composites

incorporate the effects of arbitrary fiber geome try, anisotropy, and inter-

face debonding. In addition to diffusion , a thermodynamic theory of elastic-.

plastic wave propagation under finite defo rmation has been developed. The

constitutives laws of the microcomponents currently in publication relate

the mean stress (trace of the stress tensor)  to density and internal energy

by a Mie-Grilneisen caloric equation of state and the stress deviato r ten-

sor to the rate-of-deformation tensor by an elast ic-perfectly plastic

relation of the von Mises type ; extension to gene ral anisotropic plasticity

utilizing a plastic potential and an associated flow ride is unde r develop-

ment. Constituent debond ing and component-interface ph ysics is governed

by a Coulomb frictional-type relation; the latter constitutes the present

measure of “damage ” ; extension of this measure to include microcracking

throughout the components is , as was noted previously, under study.

In the case of linear elastic wave propagation, model accuracy

has been demonstrated by comparison of phase velocity spectra with exact

and/or experimental data. Accuracy superior to existing theories has

been observed, as well as f i rs t  order model applicability down to wave-

leng ths on the order of typ ical composite microdimensions (when the energy

4



is partioned pr imari ly in the f i r s t  mode). In addition , a number of transient

pulse cases have been treated;  these exhibit good correlation with exact and/or

experimental data . A sampling of typical trans ient pulse results for both

laminated and unidirectional fibrous composites is illustrated in Figs. 1-4

of Appendix 1. 
• 

Typical transient wave propagation results for a complex,

advanced, three-dimensional composite are g iven in Figs. 8-10 of Appendix I.

Complete details , including extensive phase-velocity-spectra-calculations,

can be found in the appropriate references liste d unde r Section Z. 3.

In the case of large deformations and elastic-plastic wave propaga-

tion, theoretical transient pu lse- resu l t s  for  propagation parallel to the

fibers of a unidirectional fibrous composite have been compared with data

from a 2D- Lagrangian finite difference-code (CRAM); the latte r is essentially

exact. As can be observed from Appendix I, Fi gs. 11-14 , the agreement

between “ exact” and approximate calculations was found to be excellent.

Model accuracy in the case of interface debonding has , to-date,

been assessed by comparison with experimental data on delam inated

plates c~~nposed of alterna ting layers of Polymethyl Methacrylate (PMMA ,

Rohrn and Haas Type A), and 606 l -T6 aluminum. The laminae of the

composite were oriented perpendicular to the impact plane , and struck

by a projectile fired from a 10 cm bore li ght gas gun. On the basis of

averaged particle velocity measured at the rear face of the spe cimen,

the model hypothesized yields excellent correlation with the experimental
S
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results. The test setup and typ ical results are illustrated in Figs. 15-18

of Appendix I.

In addition to the above , s tudies concerning the accuracy of the

thermal-portion of the continuum models were undertaken. In part icular,

diffusion-type processes  in a laminated composite with periodic micro-

structure were examined. Solutions for the lowest-order models were

compared with “exact” results from a finite dif ference code. For most

cases the lowest-order “effective conductivity” theory was found to yield

good results. For exceptional problems requiring a hi gher -order  theory,

a modified version of the lowest-order theory was found to y ield excellent

correlation between exact and approximate solutions. For man.. problems

of the diffusion-type, these elementary equations may offe r an attractive

alternative to other means for obtaining solutions. Typ ical results  for

the case of heat propagating normal to the layers Gf the laminated com-

posite of Fig. l , Appendix I, are illustrated in Figs. 19 and 20 of

Appendix I. In each case a uniform temperature T is applied to y 0

from t 0 and t = to 
while the boundary temperature is zero for all othe r

time. (Here ~ = h
1 + h2

, p c = heat capacity of a-material , k =

thermal diffusivity) .  It is emphasized here that , although Figs. 19, 20

refer to a one-dimensional example , the theory is valid for three-

dimensional problems. The one-dimensiona l case was selected mainly

because the most severe test of the theory occurs when heat flow is
4
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• normal to the laminates (since material  proper t ies  are discontinuous in

this direction) .

In the last interim scientific report , it was noted that a major develop-

ment in theoretical  modelin g was effected during the previous re search period.

The development allows treatment of a rb i t ra ry  f iber  geometry and a r r ays .

• Basically, the task of cons t ruc t ing  mixture theor ies  has been partioned into

two isolated steps. The f i r s t  step involves the dete rmination of the gene ral

mixture equations for a particula r problem class; these equations involve coef-

ficients which must be dete rmined from the detailed micros t ructura l  geometry ,

interface data , and constitutive relations. The second step defines the constants

via a quasi-static “microboundary ~alue problem ” (MVP) .

Resolution of the MVP is carried out by a varia tional-based finite eleme nt

method. The procedure has been applied to d i f fus ion and wave propaga-

tion in unidirectional composites. Here important information has been

obtained regarding the accuracy of the concentric cylinders approximation

used frequently in practice for circular fibers in a hexagonal a r r ay  and

for rectangular f ibers  in a similar array. Extension of the procedure to

arbi t rary three dimensional geometrie s is under development.

A discussion of the above subject matter can be found in the survey

paper listed under Section 2. 3. For the readers convenience, the latte r

is included as Appendix II of this report.

a
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Finally, during the cu r ren t  research period anothe r major advance

in ou r theo re tical model ing p rocedur e was accomp lished. This development

allows a unified treatment of laminated and f ib rous  composites , and provides

a substantial increase in model accuracy. The mixture theory construction

procedure in this case is based upon the Regular Asymptotic Method in conjunc-

tion wi th  the use of a multi-variable expansion procedure. The approach has

been successfully applied to both wave p ropagation and heat conduction in larn i-

nated composites. Fibrous composites a re  unde r stud y. The result ing fo rm

of the mixture theory indicate s a significant  flaw current l y exists  in some

gene ral phenomenolog ical mixture theories .  Reports  and publications on this

subject are in preparation.

2. 2 Research Applications

The fundamental concepts embodied in the aforementioned wa ve

propagat ion studie s have been successfully employed in an applied research

effort to model 1-D (FMI COMRAD) and AVCO 3DQP quartz pheon1 tc

composites. These models, and the resulting numerical code (TINC) are

presently in practical use by the engineering profession. Typical results

for 3 DQP a e  illustrate d in Figs. S - 10 of Appendix I.

2. 3 List of Publications

The following publications are representative of the research

progress attained during previous and present Grant periods. All

publications listed were either totally or partially supported by AFOSR.8
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APPENDIX I

Compend ium of Typical Theoretical Results

Presented in this Appendix is a sampling of typical transient pulse

and diffusion calculations carried out using the Theory of Interacting

Continua (TINC). The cases discussed include laminated and unidirectional

fibrous composites as well as a complex 3-dimensional layup. Results of

the TINC theory for each example are compared to experimental data.

Laminated Composites

The geometry of the laminated composites studie s is illus trated

in Fig. 1. One problem of interest is that of symmetric (P) wave

propagation parallel to the layers, with mate rial behavio r re str icted to

the linear elastic range. A comparison of TINC and experimental results

is given in Fig. 2. The experimental results  were reported by Whittier

and Peck [I] for specimens composed of Thornel (hi gh modulus carbon)

fibers reinforcing a carbon phenolic matrix. Specimens of 1/4-inch

thickness were subjected to a uniform pressure at the left boundary, with

a step function time-dependence induced by a gas dynamic shock wave of

about 70 psi. The numerical calculations were initiated by impacting a

step function velocity of 7.786 cm/sec to both constituents at the boundary.

While this condition does not correspond precisely to the experiment, it

was felt that the error introduced would be negligible when far removed

14 
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from the front surface. Figure 2 depicts the comparison between

experiment and theoretical results for averaged rear surface velocity,

normalized on the boundary input velocity. Since absolute times were

not measured in the tests, theoretical and expe rimental results were

matched at their  respective f i r s t  peak arrivals.  In the fi gure, results

from the full TIN C equations solved numerically are denoted “Continuum

mixture theory. ” The results denoted “Simplified theory ” are for an

elementary form of the TIN C theory admitting a closed-form solution.

Unidirectional Fibrous Composite

The TINC theory has been applied to the problem of wave prop-

agation parallel to the f ibers of a unidirectionally re inforced composite

with hexagonal array.  The hexagonal a r ray  is approximated by concentric,

linearly elastic cylinders as illustrated in Fig. 3.~

In Fig. 4, transient pulse da ta predicted by TINC is compared

with experimental data on a unidirectional quartz phenolic fibrous

composite. The experiments were subjected to a 70 psi step function

in pressure via a shock tube. The fi gure dep icts the comparison between

the experimental and TINC theory code predictions of area-averaged rear

surface velocity. Results of the simplified TINC theory are also por-

trayed. Once again the experimental and theoretical results  are matched

at their first peak arrivals since absolute arrival times were not measured

experimentally. As was the case in Fig. 2, the times shown are those

15



predicted by the theory.

Three-dimensional Lay-ups

Predictions of transient pulse behavio r from the TINC theory

ha ve been compared to experimental results for a 3-dimensional quartz

phenolic composite (3DQP) manufactured by’ AVCO. A representative

selection of the results are given here.

A “block” 3DQP specimen (Fig. 5) was subjected to sho ck tube

tests by the Aerospace Corporation. The test procedure is the same

as that used for laminated and fibrous composites and is described above.

Once again the theoretical and experimental boundary conditions are not

identical, but this decrepancy is expected to introduce little error. The

ave raged rear surfa ce velocity measured by experiment is compared to •

that predicted by the TIN C theory in Fig. 6. Also shown are results

predicted by the elementary “Head of the Pulse” approximate [2].

The experimental data has been forced to coincide with the theoretical at

V/V = 1/3 since absolute arrival times were not measured.
0

Another set of relatively low pre ssure wave propagation ezperiments

were performed at the Air Force Weapons Laboratory using a li ght gas

gun and “midspace” 3DQP specimens , shown in Fig. 7. In this test , three

specimens of d i f ferent  thicknesses were mounted on a s ingle target  and

impacted with a .01-inch mylar flyer. - The input stress profiles for the

three specimens are illustrated in Fig. 8. For the TINC calculations, . •
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input velocity t ime-histories corresponding to the stress-time data of

Fig. 8 were us ed. A comparison of experimental and theoretical resul ts

for the thickest of these specimens is shown in Fig. 9. Since absolute

arrival times were not measured, the two cur’es are forced to coincide

at their peak pressures. The agreement here is excellent, especially

in view of the fact that the wave is measured onl y 2 - 1 /2  microdimensions

from the front  surface. Also , with the 10kb input stress, this is a non-

linear calculation.

The AFWL also performed a series of hi gh-pressure  gas gun

experiments on “midspace” 3DQP specimens (Fig. 7). Experimental

and theoretical data are compared “ Fig. 10. The observed agreement

indicates that the thermodynamic and nonlinear constitutive behavior

incorporated into the TINC theoretical model are adequate. Note that

here the rear surface velocity is measured only 1-1/2 microdimensions

from the front surface. Thus , as before , the TINC theory, though

derived as an “outer ” solution, yields surprisingly good resul ts  even

at locations quite near the boundary.

Comparison of TINC and 2-D Finite Difference Code

It is of interest to compare the results from a TINC calculation

to those of a typ ical two-dimensional Lagrang ian finite difference code

which is essentially exact. Such a code (CRAM) is available at Systems,

Science and Software, Inc. The two codes were compared for the

17
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concentric cylinder geometry of Fig. 11. Computer costs for CRAM were

approximately 500 time s those for running the TINC code. Seve ral typ ical

results are illustrated in Figs. 12-14 for a square wave input velocity

(shown as problem #2 on Fig. 11). Once again, the calculations were

carried out within a few microdimensions of the boundary.

Debonding of Const i tuent  Interfaces

Model accuracy in the case of interface debonding ~ir  cracking

has, to date, been assessed by comparison with experimental data

dealing with delaminate d plates composed of alternating layers of

Polymeth yl Methacrylate (PMMA , Rohm and Haas Type A), and 606 1-T6

aluminum. The lamina e of the composite were oriented perpendicular

to the impact plane , and struck by a projectile f i red from a 10 cm bore

light gas gun. On the basis of averaged particle velocity measured at

the rear face of the specimen , the model hypothesized yields excellent

correlation with the experimental results.

The test setup employed is illustrated in Fi g. 15. Typical

correlation between theoretical and experimental results is shown in 
•

Figs. 16-18. Complete details can be found in reference [13].

Dif (us ion

The laminated geometry of Fig. 1 was selecte d to evaluate the

continuum model construction procedure for diffusion problems (a

18



complete discussion of this work can be fo und in re ference  [4]). The

case of heat propagation normal (in the y-di rec t ion)  to the layers was

selected for a comparison of exact and continuum theory solutions since

it is known that this case represents the most severe test of the latter.

Figure 19 represents  a case of similar material properties whereas

Fig. 20 illustrates the comparison for widely differing material prop-

erties. Continuum theory-results were obtained via closed-form

solutions for a square-wave temperature input at the boundary y 0.

“Exact” results were obtained us ing a finite d i f ference code. The

calculations illustrate the abil ity of the f i r s t -o rde r  theory to model

rnicrc.’ tructure details and closel y match the exact data.
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MIXTUR E THEORIES WITH MICROSTRUCTURE FOR WA VE
PROPAGATION AND DIFFUSION IN COMPOSITE MATERIA LS

Two procedures for constructing mixture theorie s with micro-
structure are  discussed for wa ve propagation and thermal diffusion
processes in binary laminated and f ibrous composites. Each method
pro ceeds from the composite micros t ructure  and is based upon an
asymptotic s cheme where in  the rat io of t ransverse-to- long itudina l
character is t ic  times associated with a ph ysical process is assumed to be
sm all. The methods retain conside rable information regarding the
me chanical and/or  d i f fus ive  fields within the microcomponents.
Theoretical results are compare d with both experimenta l and exact data
in an effort to evaluate model accuracy. The presentation includes treat-
ment of geometric, constitutive, and interface nonlinearities.

1. INTRODUCTION

A considerabl e number of continuum theories have been proposed
for the rmomechanical processes in composites. The continuum theory
of mixtures represents one of the more important and successful  theoreti-
cal de~~~ript ions of such multiphase materials .  According to this concept,
the composite constituents are modeled, at each insta nt of time , as super-
posed continua in space. Each cont inuum is allowed to undergo iridivid-
ual deformations. The mnicrostructur e  of an actual composite is then
simulated by specif y ing the interactions between the continua.

Mixture theories for multiphase materials ha ve been deve loped
from both macrost ructural  and microstructura] .  viewpoints. The vast
majority of activity ,  however , has been directe d toward the fo rme r ,
which concerns the fo rmulation of a general theore t ica l  f ramework for
classes of mixtures based upon certain phenornenological postulates that
avo id detailed microstructural  considerations. Excellent accounts of
this approach can be found in [1-3].

The development of mixture theories from the microstructural
viewpoint represents a mo re diff icul t  task . The re ward , howe ver , is a
model - which shall be called a mixtur e theo ry with rn icrostructure  -tha t is co mpletely determined by the geometry and constitutive relations
of the individual components and which provides , to a certain degree of
accuracy, information concerning mic ros t ructu r e  fields . Of course ,
the price one mus t pay for such deta il is often a case-by-case stud y
rather than a gene ral theory. Nevertheless, it should be recognized
that , while gene ral rn acros tructu ral - based theories may appear more
elegant, such theor ies  may not be practical for many app lications due to
the unreasonable burden placed upon the experimentalist  to determine a
multitude of constants and/o r  function s.
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In this presentation, focus is placed upon several recent works by
the author and co-workers concerning the construction of mixture theories
with microstructure for laminated and fibrous compositts. The discus-
sion is limited to thermomechanical processes in composites with initial
per iodic  mic ros t ruc tu re .  Par t icular  emphasis  is placed upon wave
propagation and thermal diffusion.

The presentation is divided into five sections. The methodology
associated with two theoret ical  construction te chniques is g iven in
Section 2 along with a brief  su rvey  of app lications. These techniques
are demonstrated via two examples in Sections 3 and 4. Finall y, in an
effort to illusidate the app licability and utility of the techniques , two
applications to nonlinear problems are  discussed in some detail in
Section 5; these include comparisons between mixture theory ,  exact and /
or experimental results.

2. METHODOLOGY AND SURVEY

A var ie ty  of co nstruction procedures may be used to generate
mixture theories  with micros t ructure .  Two such procedures  are selected
for discussion herein  in view of thei r  observed success in describing
thermnomechanical processes  in composite materials.

The f i r s t  procedure , which is illustrated in Section 3 by an
elementary example , is the Di f fe ren t ia l-d i f fe rence  Method. This
approach has been used to develop continuum models of wa ve propagation
in linear ela~ tic 14-9, 26] and linear r i scoelast i c  [9-10] laminated com-
posite s, wa ve propagation in linear elastic f ibrous composite s [7-11],
wave propagation and debonding in laminated composite s [ 12 J ,  and

• thermal di f fus ion in laminated composite s [13 , 14]. The method consists
of ei ght basic construct ion steps which may be summarized as follows :
1) the field quantities (all dependent variables)  of each compo site
constituent are expanded in a suitable spatial series (this expans ion ,
which amounts to discret izat ion of the component domains , may range
from a Tay lor ser ies  for  suf f ic ient l y s imple geometrie s to topolog ical
multiplexe s 115], e .g . , finite elements, for comp lex geometries);
2) r ecur rence  relations for the expansion coeff ic ient -functions are ob-
ta ine d b y use of the field equations and the ser ies  is telescoped; 3) applica-
tion of interface continuity conditions lead to different ial  (in time) -
finite d i f f e r ence  (in space)  equations ; 4) an associated set of differential
(in t ime) - functional d i f fe rence  equations is observed to contain , as a
solution subset , solutions of the f ini te  di fference relations; 5) solutions
of the functional equations are smooth field s which take on exa ct values
at discrete spatial points; these smooth fields are now employed as
dependent variables;  6) all spatial d i f ferences  are expanded in a Tay lor
serie s - an operation which furnishe s partial d i f fe ren t ia l  equations , i. e.. ,
a cont inuum model; 7) nondimensional variables and a small paramete r
represent ing  the ratio of typ ical mic ro- to -macro  dimensions is introduced
and the ope ra tors  are  t runcated according to an asymptotic procedure ;
8) mixture equations result  b y al gebraic manipulatio n.

The second procedure , i l lus t rate d in Section 4 by an elementary
examp le , is the Regu l ar  Asymptotic Method. This approach has been
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used to model nonlinear wave propagat ion  in laminated [16]  and f ibrous
r 17-19]  composites , and thermal d i f fus ion  in f ibrous  composite s (20— 2 1] .
The me thod consists  of six basic construct ion steps which may be sum-
marized as follows: 1) based upon the par ticu lar  composite and the
process conside red , an estimate of the order of magnitude of all field
variable s is made; 2) the field equations are re-scaled such that all
dependent variables are O(l )~- i n  the process  a small pa rameter is intro-
duced which constitute s a measure of the ratio of micro- to-macro-
dimens ions of the problem; 3) the conservat ion equations are averaged
to obtain a standard m ixture fo rm; 4) the scaled field variables are
expanded in a re gula r asymptotic series; 5) the two lowest order systems
(including interface conditions) are used to obtain expressions for the
interaction te rms and the constitutive relations; 6) the constants involved
in 5) are obtained from the solution of a static micro boundary value
problem de fined ove r a unit cell; a variational pr inciple - based finite
element method is suggested to resolve this boundary value problem.

A judicious choice of a part icular method depends upon the
problem. The Dif ferent ia l -d i f ference  Method is best suited to linear
problems and elementary geometries such as laminates. Here formally
exact relations may be obtained in many cases. The Regular Asymptotic
Method is , on the other hand , applicable to nonlinear problems and
complex geometries. In this case one is usually content with the f i rs t
few terms of the asymptot ic  series.

3. EXAMPLE I : WAVE PROPAGAT ION

For the purpose of illustrating the Different ia l-difference Method ,
cons ide r wa ve propagation in a periodic array of linearl y elastic, homo-
geneous and isotrop ic laminae , perfectly bonded at all interfaces as
illustrated in Fig. 1. Let y a x2 for  notationa l convenience and assume
a state of uniaxial motion in the y-direction; i. e., the case of one-
dimensional longitudinal waves propagating normal to the laminae. Re-
strict ing attention to small i so thermal  defo rmations, the appropr ia te
conservation and constitutive equations are

(~yC~ 
p~~u)~~’

1
~ = 0  ~~~~~~~~~~~~~~~~ 0 , ( I )

while the interface continuity conditions are

[u ,a~~’”~ (h~
’ 

~, t) = [u ,a)(2
~

k)(_ h (Z)
, t) ,

= [u ,~ fZ~~
k)

(h
(Z)

, t) . (2)
th th

In the above the superscripts (a,k) refer to the k layer of the ~
constituent, a = 1, 2; k 1 , 2 , 3... . The variable y 1~~ lo) is a local
coordinate with origin at the rnidplane of the (a ,k) layer;  a a 022 and
u u 2  are  normal s tress and disp lacement (subscr ipts on ~ and u have
been dropped for b r e v i t y ) .  The quant i t ies  p (a) , h(a) , X (a) , i’~~~ 

are mass
dens ity, laye r half thickness and Lame ’ constants for the ~ - constituent.
In addition ?y( ) ?( ) / ?y ,  ~~( ) ~( )/~~t.

Wave motion in the composite is complete ly specif ied by (1) ,  (2)
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together with initial conditions at t=O and boundary data on y=O , i-I(H �

The objective of the subsequent work is to rep lace this  ~et of equat ions
(infinite if H = 

~~
) by a sing le set of pa rtial diffe rential  equations which

rep resen t - a  continuum mixture theory.

3. 1 Expansion, Recu r r ence  Relat ions

Let us expand the stress and disp lacement abo~~ each laii~iia mid-
plane as follows:

‘ak 1ak~
n

g(y’ ‘ ‘, t) = ~ g, ~(t)y ~ 
‘ ‘ /n~ . (3)

n=0 !~fl~

Here g represents any of ~~~ (a,k) 
Upon substituting (3) into (1) and

equating powers of ~ a~1o) , one obtains the differential  - recurrence
relations

= [u ,a)~~~~ 
~ 

~~~~ = ~~~~~~~~~ (4a)

Here

, ~~+2~J~~ , (4b)

where n = 0, 1, 2 . . . ;  k = 1, 2 , 3,... ; ~ = 1, 2. With use of the recurrence
relations (4a), the ser ies  (3) may be telescoped as follows

t) =

(~ ,k) (a,k) 
+ y~ 1k)s(0

~~
)
[r t a p u ) ~~;

’~ (5)

- where C , S are formal different Lal operators defined by

(a,k)
C a cosh(c y

(a,k) (
~~ )~~ 

~ (~~~ ) — 1  . (~~
) (

~~~~~ )S (c y ?~ ) sinh(c y 
~~~

) . (6)

The functions 0(O)(a.k)(t ),  u (0)(0~’c)(t) represent s tress and disp lacement at
the rriidplane of the (a,k) layer; these serve as dependent variables in the
ensuing ana lysis.

3.2 Transition to a Continuum Theory

Substitution of the expansions (5) int o the interface conditions (2)
furnishes the following different ial  (in time) - finite difference (in space)
equations with dependent variable s defined at discrete points along the
y—a xis:

c~~ (u~~ ; ÷ u ~~;
’~~) - zc~~u~ ;~ - h(a) 

~~~~~~~~~~~~~~~~~~~~~ = 0 ,

(a) (a,k+ 1)  (a,k) (~3) (~3,k) (a~ (a) .(a) 2 (o’,k+ 1) (a,k)C 
~~~ ~~ 0) - ~~~~~~ 

~~~ 
- 

~~ ~~~~~ 
- ‘
~0) 

) = 0 ,

(7)
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= 1 , 2; a# ~~.

If one now define s the fields

(u,a)~~(y,t) C U ,0)
(a.

~~~~~Y,~~) for yE(Y ’
~~ h~~, 

.~.
(a.k)

+h
(a)
~

- E (0,0) for YE(Y ’
~~~h~~, 

y(~
3.k)+h

(
~
3)
) , (8)

~~~
, P = 1, 2; a ~ ~3; and if one notes that

= [U ,0)
(a)

(Y~
a

~~~~) ~~
Z.k ) .

~
( I
~
k
~~A , ~~~~~~~~~ ,

(9)
then (7) can be rewritten in the form

C~~t 
(&(~~~~~) + U

(a)
( y-~.,t)J -

- h(a)
~~

(a) S(a)
[j a)(Y÷~ ,~) - ~(y-~~,t)J = 0 , (l0a)

+ d~(~
_
~.,t)] - 2C~~

j13
~(y,t)

- u~~(y-~ ,t)] 0 , (lOb)

a,P 1, 2; ~ ~ ~3. Equations (lOa ,b) were obtained by replacing the Fields
0(~~~y(B ,k) , t) and d 1 ~(i~,k) + ~~, t) ,  etc. , by the smooth fields o(P)( y-, t),

etc. , defined over the entire domain of the composite; here
denote s the mid plane of the (a ,k) laye r (see Fig. 1).

The functional difference equations ( lO a , b) contain , as a subset,
the solutions of the finite difference equations (7). That is , the new
fields sat isf y (7) at y = y(P,k) • Ther efore , the new dependent variable s
~~~~~ a~°~

) are  functions defined for all y which assume exact value s at
laye r xrtidplanes. Assuming the admissibil i ty of such expans ions , all
sums and d if f e r ences  are now expanded about ~ = 0 in a Taylor series;
this leads to the partial differential equations

C~~~c~u~~ - ~~~~~~~~~~~~~~~~~ - = 0

- h(a)
~.P

(a)
S(a)

S?~ ?~~&) 
- ~~~~~ = 0 , (11)

= 1, 2; a ~ ~~~, 
where ~~~ , ~ are formal differential  operators of the form

a cosh(~~~~) , ~~~~~~ s inh(~~~~) . ( 12)
Equations ( 1 1 )  constitute a continuuzn model of the composite. The
dependent variables u~~~, 0(a ) of ( 1 1 )  can be used to reconstruct  the
rn icrost ructural  fields throug h (5)(noting (8)) .

3.3 Scaling

Let the typical rnacrodimerts ion” of the problem be ~. arid the
typ ical “rnicrodimens ion” be ~~. The quantity .~‘ represent  a dominant
si gnal wavelength associated with wave motion. Introduce the non-
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dimens ional quantities -

(a) (a) 2 (a) (a)
E y/

~ 
, E tc/~ , C E ~ /2., , a ~ /pc  , a u

(13)
where p, c denote appropriate mixture density and wave speed. Then ( 11)
becomes - -

- ~(P) g(P)$) 0 
— .

- ;
(a)~~g(a)~ Zfl

(a) 
- ~

.(P)
~

P) ?Z
fl

(P) 
= 0 , (14)

where

S C oSh( .~~~? )  ~~a) 
(C~

a)
~~)

_ l
sinh(C~

a)
~~ ) (15a)

C a cosh(~~~) , a (~~~~)
_ 1  

sinh(c
~~~

) , (c/c~~ )n~~ , (15b)

(a) (a) ~~(a) (a) (a) (a) 2 (a) ~(a)n a h / ~ , p a n  p ip , a PC n /E . (15c)

The gove rning equations (14) are now scaled such that , if yE(O ’ ~
)

and ~r€ (0 , t./ c) , then ~ € (0 , 1) and ‘r~~(0 , 1); tha t is , the macrodimension is
now 0( 1) while the microdimensioni is 0(c).  Thus , it is evident that all
foregoing Taylor expansions about ~ =0 are in fact  expans ions about c = 0;
further, all operators  are powe r series  in (2n ~ , a = 0, 1, 2... . Such
expan’~ions are not required to converge , but only be asymptotic as

3.4 Binary Mixture Theories  -

With some al gebraic manipulations, equations (14) may be re-
written in a fo rm charac ter i s t ic  of b inary - type mixture theorie s as
follows:

- ~~(a) ( a ) - 2 ( ~~)- 
= (~~ )

a+l~ (16a)

- 
(a) (a)-~.(a). = ( 1 ) a+I~, , (16b)

a l ,Z. Here

2 (2)42) ( 1) (1)  2 (2) (2)  ( 1) (1 )
~ p a ~~ ~, -~~~~ ~ , ~ -c  ,

~ 
, ( l6c ,c~

~ 1/2 ~ + + ~~~~~~~~~~~ . (16e)

The bracket in (16a)  suggests a momentum equation while that of
( 16b) has the cha racte r of a constitutive relation. The quantities P and R
represent constituent interaction terms.

A mixture theory  of order ri is now define d as those equations
obtained from ( 16a , b) by t runca t ing  the ope rators  ~ a) r’~ and ~~~~~ as
well as the in p and R , afte r O(c 2~~~2 ) te rms. In particular, a
mixture theory of orde r 1 is , unde r this de fini t ion , g iven by
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~~
2

v)~~ = (~~l )a+1~~~, 
~~~~~~~~~~~~~~ 

= (-1)~~~~E~~ (17a,b)

2 i2) ( 1) 2 •, (2) ( 1)
~ -T ~ - 77 . - (18c ,d)

Equations ( l 7a )  may be interprete d as m ixture momentum relations arid
(17b) as mixture constitutive equations. The interaction terms in this
formulation are proportional to disp lacement - and stress differences, -

respective ly.

The ope rator ~~ preceding the le ft s ide of each equation (17a ,b)
can be eliminated by expanding the dependent variables in regular
asymptotic series in c. The result .upon retaining O(c 2 ) te rms only, is

- 
(ap )~ Z (a) 

= ( 1 ) (a)~ ~~~~~~~~~~~~~~~ (1 8)

where ~ is a constant which is a complica ted funct ion of composite
geometry and material  prope rties. The quantitie s ~ (ap ) , p(aP ) here play
the role of “partial” stresses and densities; their ph ysical interpretation,
however, is not obvious. Details concerning the derivation of (18),
which shall be called a modified (f i rs t  order)  mixture theory, can he
found in [4].

Let u.s now consider the lim it as C .
~~ 

0 in (16). If it is assumed,
that t. and c may be selected such tha t ~~ ( ) = 0( 1), ?~ ( ) = 0( 1)
n = 1,2... , where ( ) represents ~~~ or ~

), as C -. ~ (i. e . ,  as the ratio
of micro-to macro-dimensions vanishes), then (16) reduces in ~~men-
sional form to

— ~~~~~~~~~~~~~~~~~~~~~~~~ + ~~~~~~~~~~~~~~~~~~~~~~ = 0. ( 19)

Therefore, the theory is nondispersive as c -. 0, a result  to be expected.
Equation (19) implies that the appropriate mixture dens ity p modulus
E, and wave speed c, are

P ~~~~~~~~~~~~~~ ~~-l ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ (2 0)

3.5 Phase Velocity Spectra

It is evident tha t the forego ing theory represents a long wa ve-
length, low frequency approximation of composite wave motion. A
natural question conce rns the range of validity of this approximation. A
convenient indication of the comparative accuracy of an approximate
theory can be obtained b y studying the phase velocity spectrum.
Assuming steady-state sinusodal wave trains , equations (16) ,  (17) or (18)
become a set of homogeneous al gebraic equations from which the relation
between wa ve number k and phase velocity Cp is calculated. A typical
comparison of exact, f i r s t  order , and modified ( f i r s t  order)  mixture phase
velocity spectra is shown in Fig. 2 for a Polyrnethyl methacrylate
(PMMA) - 304 sta inless steel composite. The data shown represents
the first mode of propagation down to the cutoff f requency  associated
with the first “stop band ”. The exa:t spectrum result3 from retaining
all te rm s in the ope rators of (16) and is identical to that g iven by -
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R yto v r Z Z ] .  Comparisons such as Fi g. 2 indicate that  reasonable
accuracy may be expec ted  from a theory  of o rde r  I down to wavelengths
equa l to severa l  microdimensions  for  problems whe re the e n e r g y  is
part i t ioned p r imar i l y in the f i r s t  mode. This is quite a rema rkable
result  for such an elementary theory.  Addit ional  details concerning the
phase veloci ty  spectrum as well as t rans ient  pulse calculat ions and an
associated discussion concerning initial and boundary conditions- can be
found in [4-9].

4. EXAMPLE 2: HEAT CONDUCTION

For the purpose of illustrating the Regula r Asymptotic Method,
consider a linear thermal d i f fus ion  process  in a per iodic ,  two-dimens ional
arra y of unidirectional  f ibers  of a r b i t r a r y  cross  section embedded in a
matrix, as illustrated in Fig. 3a. Let a “cell” be associated with each
fiber as depicted in Fig. 3b. Each suc-h cell consists of regions A~

1
~ and

A~
2
~ occup ied by the f iber  and matrix, respectivel y, with unit  oute r

no rmals~ N~U) and N~
( 2) . The interface between the two constituents

shall be denoted by I, and the outer boundary of the cell by C. With

respect to rectangular Carte s ian coordinate s x 1, x2, x 3 as shown in
Fig. 3a, let the composite occupy the domain 0 � x3 � L, -

- ~~ < x1 < = .  Assume that the two constituents in each cell are  homo-
geneous and isotrop ic with a pe r fect  interface (no thermal resistance).
Finally, let the initial conditions , and the boundary conditions on

= 0, L be such that the temperature field is similar in each c~’1l. In
vi ew of the iastpremise it is suff ic ient  to cons ide r a typ ical cell with
zero heat fl ux no rmal to the boundary C. Conseque ntly the basic equations
for the temperature fields T~~~ and heat flux vectors Q1(a) , a = 1,2, are

(Q. . + d~~)~~ = 0 , (Q. + k T, .)
~~~ = ~ ~~ A~~ ; (ZIa ,b)

.J .J  1 1

~~~~~~~~ = 0 on C; T~
’
~ = T~

2
~ and (Q~~ ) 

- Q~
2
~)N~

’
~ = 0 on I.
- (2 1c,d)

Equation (Zla) is the conservations of energy; the relation (21b) is the
Fourier heat conduction law; equation (21c) is a symmetry condition; and
(21d) represents  tae interface continuity of temperature and normal heat
flux (note N3(a) = 0). The superscript a 1, 2 r e fe r s  to the fiber and the
matrix, respe ctivel y. The quanti t ies d, k denote heat capa c ity and
thermal conductivity,  respect ively. The notations( ), 

~ a ~ ( )/ ?x~ and
( ) ~ ~( )/~ t have been introduced for convenience.

4 1  Scaling

Equations (21),  together  with initial conditions at t=0 and appropri-
ate boundary data on x3 = 0 , L specif y a well posed problem involving
three spatial va r iables xL and time , t. The objective of th e sub sequent
ana l ys is  is to derive a continuum mixture t heo ry  governing the macro-
scopic d i f fus ion  process  w h i c h  involves onl y one spatial dimension (x3)

~Latin and Qreek subscri pts imply Car tes ian  tensors  and the usual sum-
rnation convention with ranges from 1 to 3 and I to 2 respective ly. -
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and yet reflects , at least approximately, the effect of conduction on the
rnicroscale.  To th is  end , let A and t~ be associated with typ ical
“macroscopic ” and “microscop ic ” observat ional  dimensions, respectively.
These lengths may be defined in terms of characteristic thermal diffusion
time s in the long itudinal and tran5 verse  direct ions  according to

- - - t
(J~) 

a dHA
2

/k ( ) ,---t~~ a d~~~~~
2
~/k~~~) 

— ——-- - (22)

where d (m). k (m) denote mixture heat capacity and the rmal conductivity
(to be defined later). In addition, it will be convenient to introduce a
mixture heat flux Q (m) based upon a reference temperature T , and a
parameter C as -follows:

~~(m) lc(m) T/’~ , C a = (t (~~) / t (~~ )~ . (23)

The quanti ty  represents the ratio of micro-to-macro-dimensions of the
composite.

With the aid of the foregoing definitions, the following non-
dimensional va r iables are introduced

(~3~ Ca p
) (X

3
s X

p
)/ ~~~I I a t / t (A ) I (~ 3~ ~~~~~~ a ( Q Q )

(a)
/Q

a T~~~/T , a d~~~/d  , ~~~~~ 
a k~~~/k(m) (m)

whence ( 2 1) become

. + d~ ) = 0 , (r~ , C
2

’~ )
(O) 

+ ~(a)
13 ~ )(a) 

= ~ ~~ ~ a) (24a ,b~3,) 3 p 3~~~

= 0 on 
~‘ ; = d~ . ~~~~~~~~~~~~~ = 0 on j 

-

. (24c ,c~

In (24) ~3 = I , ~ ~nd ~~, C denote ~~~~ i, c in nondirnensio,nai. form;
the vectors are unit oute r normals to the boundarie s of ~‘~~ ; partial
derivatives are now defined b y ( ), a ~( )/~~~., ( ) a ~ ( )/~~i .

4.2 M ixture Equations

Binary m ixture equations for  this problem can be immediately
obta ine d by ave rag ing (24a) ove r a(a) according to

= ~(a) ~~~ da)~~ 
~~~ ~~~ 

T)d~ 1dE 2 (25)
- (a)

where represents or d~ . This yields , afte r a little algebraic
manipulation

+ d~~~’P~ = (-1r ~~
’p , p a G~~~~~~~~v~~~ds

I,

- 
(26a,b)

‘I
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where -

~(a p) (a)~~aa) ,4(ap) n~~ d~~ , 
(a) (a)

/(~
( I ) (Z) ~ (27)

The quant i t ies  ~~~~~ ~(a p) ~ a) 
represent  partial  heat fluxes , partial

heat capacitie s, and volume fract ions , respec t ive ly. The va r iable P is
an interaction term reflect ing heat t r ans fe r from the f iber  to the matrix.
At this stage the mixture equations (26) are exact. Approximations arise
when one attempts to model the Fourier  expressions for heat conduction,
and the interaction term.

4.3 Asymptotic Exoansions

A fundamental premise is now introduced: the ratio of the
characteristic thermal diffusion times in the t ransverse  and long itudina l
(fiber axis ) directions in small compare d to unity, i. e.,

C = t (~ ) /t (A) = (~ / .&
2 

<< 1 . (28)

Equation (28) is appropriate for many composite s used for thermal pro-
tection. The premise (28) suggests the following regular asymptotic
expansion for all dependent variables , denoted by G(

~~ :

= 

~~~~~~~~~~~~~~~~ 

r) . 
- 

- (29)

If (29) is substituted into the gove rning equations (24a , b) and thf coef-
ficients of s imilar  C-order  are  equate d, one obta ins a system of equations
for each n = 0, 1, 2. . .  . in what follows , a m ixture theory  is de veloped
based on the lowest order  system.

4.4 Interaction Term

The lowest orde r system corresponding to (24a , b) is

(‘,) (~ ) (a)(n . . +~~~)~~ = 0 , (~ 3 + ‘~~~. ~~~~ = 0 , 0)~~ . (30a,b,c)

Equations (30c) y ield

= 
~
.) , (31)

whence, to lowest order accuracy,  equations (25), (27) furnish

(ap) 
- 

(ap) (ap)
- - ‘~ 

Z~ 3 (~~~3
, T )  . (32)

In order to comp lete the mixture formulation, the functional
dependence of the interaction term ~‘ on the averaged temperatures
must be determined. For this  purpose it is ne cessa ry  to conside r

and to sat isf y the continuity of temperature  including 0(C 2 ) te rms.
To begin this task, one finds from (32) and (24b) that

(a) 
- 

(a) (a ) 
3

93(0) 
- - 

~ ~( 2) ,~3 ( 3)

Next, with use of (33) and (30b , c) , equat ion (30a) become s
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(a) (a) 
- 

(a)
~ ~ (2)~’~3~3 ~~~~ (~~~3

D T)  • (34)

The functions cr.~
°’
~ 

can be related to ç ,  def ined by (26b), by integration of
(34) ove r d~ , use of Gauss’ Theorem, and the sym metry condition (24c);
the result is:

( 1 )
a~

Thus , one obtains the following relations for

= ( . . lfp  on C~~(a,P = 1, 2) • (36)

The appropriate boundary conditions are, from (24c , d),

= 0 on c ~ ~~~~~~~~~~~~~~~~~~~~~ = 0 
‘

~(2) 
- = (d ’~ - 

$2) )/ 2 
on J 

-

. (37)

Equations (36), (37) constitute a “micro ” boundary value problem
in -the ~~ , E 2 - plane; the solution is unique within a function V(~~3, f) .Once

are known, one can write

~ a) 
= + E

2
~c a ~~ {~~~~3~~I)] + ~

2p3* 
~~~~~~~~~~~ 

+ O(~~ ) (38)

where -

a , ~~J2) ) 
÷ (~ (2) 

- ~
(l) 2 

• (39)

Upon averaging (39), one obta ins 
-

~~~~~~ ~
( 1) (~~~~I) + E

ZP,..~
(aa ) 

. (40)

}Ierice, the interaction term can be written

p = ~~~~~~~~~~~~~~ , a = (~~c( l a)~~~J2a)) 1 
. (4 1a,b)

Equations (41a), (32),(26a) close the mixture theory .  The prim~.ry
result is expression (4 1b), which can be used to determine the interaction
coefficient , a , for a rb i t r a ry  f iber  and /o r  cell geometry via the solution
of a time independent  problem defined ove r the unit cell. In terms of

this problem takes the form:

= 
~~~~~~~~~~~ ~~ 0

(a) (42)

on c ; ~~
(r )

~~.~
(2) 

~~~~~~~~~~~~~~~~~~~~~~ = 0 on J~ (43)

at point . (44)
In gene ral it is d i f f i cu l t  to obtain an anal ytical solution to the

above mic ro  boundary va lue problem. As an a l ternat ive , a f ini te
element procedure  has been proposed [21]  wh ich may be u t i l i zed  for
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a rbit r a ry  two-dimensional cell geometry. This procedure is based upon
a modified Re i s sne r-t ype  variational pr inc i ple , the corresponding
functional of which is defined b y

= 
~ . 

~
. 

~~~
(a)

~~~
(a)

~~~
(a) ()~~~ ~~~~~~~ + ~~-S  ~~~~~~~~~~ ~~~

- 
a 1 ( a) 

- 
‘ ‘  n j 

_ _ _  

(4

which is defined in te rms of on ~
(a) 

and 1* on ~9. The equations for
follow from the requirement  f lbe  s tat ionary with respect to

a rbitrary va r iations of r *~~
) and ~~*; here ~~* is a Lagrange multiplier

which physically represents  the he at flux normal to the boundary j .

4.5 Numerical  Resul ts

The finite element procedure has been used for the solution of the
temperature micros t ruc ture  problem and the interaction coefficient for a
variety of geometries and combination of mater ia l  propert ies.  Details of
such calculat ions can be found in [2 1]. Here several  results of particular
interest are noted; propert ies used are liste d in Table 3.

A frequent f ibrous composite geometry is a hexagonal array of
circular cylindrical f ibers .  In practice it is common to approximate the
cell geometry of this case by concentric circular cylinders [20] .
Numerical results, based on the theory presented herein, related to the
accuracy of this approximation are shown in Fig. 4, where the inte r-
a ction coefficient has been calculated as a funct ion of f iber  volume
fraction and thermal conductivity. From the data , the conclusion can be
drawn that for a practical range of fiber volume fractions,the concentric
cylinde r approximation can be used without any si gnif icant  loss of ac-
curacy.

~‘or calculation of the interaction coefficient, the concentric
circular cy linders app roximation based on equal fiber volume fraction
can also be used for composite s conta ining square f ibers  a r r a n g e d  in a
square array. This is borne out by the results  shown in Fig. 5.

The fields ~~~~~~~ ~~ ) needed to calculate the interaction term can
also be used for the calculation of the temperature dis t r ibut ion in a unit
cell. From (38)-(40 ) one has

- = 
Jaa) ÷ a~ ~~~~~~~~~~~~~~~~~~ . (46)

In the ri ght side of (46) the onl y quantity dependent upon inplane coor-
dinates and 

~~ 
is ~~~~~~~~~~~ It follows , therefore, that curves of equal

are also isothe rmal lines within the framework of the mixture
theory. For this reason, and to illustrate the type of temperature micro-
structure that can be obtained from the mixtur e theory, contours of equal

~a) , suitabl y normalized , are given in Fig. 6 for square f ibers in a
similar a r ray .

Finally, an indication of the accuracy of the p roposed mixture
model and the cons t ruc t ion  procedure  can be obtained b y comparison of
mix ture -pred ic ted response  with ZD or 3D compute r code calculations.
This has been accomplished in [20 ] for  the case of concent r ic  c ircular
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cy linders where  two spatial dimensions and time are involved.
Calculations were conducted to determine the evolution of the temperature
field in a quescent half-space x

3 
� 0 subject to the boundary condition

1, 0 � t ~ t
T(0 , r , t )  (47)

0, t >  t
0

Both the mixture equations and the full ZD problem were solved by finite
difference schemes [20]; the latter was used as the correlating norm for
estimating the accuracy of the mixture theory solutions. Fig. 7 illustrates
typical average temperature p rof i l e s  in the two constituents after a short
time following the termination of the temperature pulse. The ability of
the mixture theory to predict  the tempera ture  micros t ruc ture  is
illustrated in Fig. 8; the radial distr ibut ion of temperature obtained from
the mixture theory is almost identical to the exact solution.

4.6 Rema rks

The si gnificant feature of  the above mixture theory, and of similar
theories proposed for wave propagation f 16- 19], is that it conve rt s what

- is essentially a three-dimensiona l problem to a problem involving a
single spatial va r iable , without losing the essential  deta ils of local field
distributions. The reduction in the number of dependent variables leads ,
of cou..se , to a substantial increase in numerical ef f ic iency.

5. SELECTED APPLICATIONS

Two applications involving nonlinear wave propagation are  briefly
reviewe d in this section in an eff3rt to demonstrate the utility of mixture
theories with micros t ructure .  The f i r s t  in volve s delamination. of
laminated compo s ites. The second concerns finite amp litude elastic—
plastic wave propagation in fibrous composites.

5.1 Wave Propagation and Deboridin~ in Laminated Composites

A “f i r s t  order ” mixture theory with microstructure has been
de veloped in [12] for longitudinal wave propagation and debonding in a
laminated, binary composite with pertodic mi cro structure .  The case
cons idered concerns small isothermal defo rmations , l inear elastic con-
stituents, and a Mohr-Coulomb interface fa ilure and slip model. In view
of the last item the problem is nonlinear.  With respect to Fi g. 1, a

- condition of p lane s t rain was assumed in the x3-direction and wave
motion y ielding symmetr ic  velocity v 1 and anti-symmetric velocity v2distr ibut ions with respect  to the x2-coordinate within each lamina.
Theoretical  con struction was based on the Differential-difference Method.

- 
In dimensional form , and with refe rence to Fi g. 1, the relevant equations
are -
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P = )sgn(u -u ) If P = 1P . (48c)
h~
’
~+h~

2
~ 

1 1 cr

Equations (48a) are m ixture momentum equations while (48b) represent
mixture constitutive relations. The quantity P denotes a momentum
interaction te rm. The var iables  ~~ 1

(~~p) , p(~~P) denote partial quant i t~ies and
are defined by ( )(aP) r$~~( )(aa) where ( ~~~~ is an averaged variable
and n~~

) a h~~ 1(h~
1
~ + ~~~~ The quantity 

~ cr is related to the interface
shea r stress oT2 and normal stress by

(h~
’
~+h~

2
~~1 P I  a Ia12 = A-Bc~2 

(a22 0)

= ( ~~~~~~ 
~~(2)~ 2)~( ~~~~~~~~~~~~~~~~~~ . (49)

The constants A, B represent  interface cohe s ion and frictional coe fficients,
respectively. The constants ~~~~~ K are given in te rms of the ~_cmpo site
properties and geometry by

~
(1) (2) (1)  (2) 2 ( 1) (1) (2) (2) (aa ) (~ ) (~ ) X~

a
~

~~ 
J (h i-h )(n ~.i +n p. ) , c a n  E - E

( ) 
(a~•

(~ ) 
E~

’
~ E~

2
~ ( ) ( ) -

~~~ E ‘ 
E 

~~~(1) 
+ (2) , E a 

( + Z ) a , (a,P=I ,Z; a~P).
- 

u n (50 )

where )., i~s. are Lame ’ constants.

Considerable insi ght into the modeling capability of the above
mixture theory can be gained b y comparison of theoretical calculations
with the experimenta l impact data on delaminated plates reporte d in [23].
The composites in this stud y consisted of alternating la yers of Pol y-
meth yl me thacry late (PMMA , Rohm and Haas type A) 0.762 mm thick,
and 606 1-To aluminum 0.792 mm thick. The laminae of the composite
were oriented perpendicular  to the impact plane , and s t ruck b y a
projectile f rom a 10cm bore light gas gun. An aluminum buffe r plate
1.0cm thick was placed at the rear  of the composite to improve
planarity of the t ransmit ted wa ve front.  A t ransparent  Dynasil  100
window followed the buffe r , and a thin mi r ro r  was vapo r deposited at the
buffe r window interface.  The motion of the m i r r o r  was monitored to
within ~ 1.5 ‘. l O S rnm by means of a displacement interferorneter. The
experimental confi gura tion  reproduced  from [ 2 3 ]  is dep icted in Fig. 9
The shot matrix is summarized in Table I.

The mixture theory,  consist ing of (48) was coded in finite dif-
fe rence form and solved numerical ly. Material  p r opcr t i e s  for  the

54

- “--

~

- - - -  ..
~~~~~~- - - -  . - - - ~~~~~~~~~~~~~~~~~ -—- ---_~~~—--- — 



G Hegernler ___  ___-  —_ _ _  —~~~~~~~~~~~~~~~~~~

composite laminate s, fl yer plate material, buffer and window materials
are listed in Table 1 . Input to the compute r code required  onl y the
material proper t ies  of all constituents, goemetries  of the test confi gura-
tion, and fl yer impact velocity. Numerical  values for A and B were
dete rmined by a parametric stud y on the results of experimental  shot
number 2. They were found to be A = 0.01 x i0 ’

~ dynes/ cm2 and B = 0.50.
All othe r correlations were performed using these values. Typical
results a re  dep icted in Figs. 10-12. As can be seen, agreement-  is
gene rall y excellent. Both theoretical and experimental results clearly
exhibit the effects of bond breakage and delamination. This is manifested
by the appearance of a precursor  at the front of the wave profile and by
greatly reduced oscillations behind the wave f ront  when compared with
both theoret ical  and experimental results for perfectly bonded wave-
guides (e.g., see [12]). . 

-

5.2 Nonlinear  Wave Propagation in Fibrous Composites

A binary, f i r s t -order mixture theory with microstructure  has
been de veloped in [17], using the Regular Asymptotic Method and the
concent ric cylinders approximation, for nonlinear wa veguide-type
propagation parallel to the f ibers  of a unidirectionally reinforced fibrous
composite with initial periodic hexagona l array,  Fig. 13. The resul t ing
model incorporates the effects  of the rmod ynamics , finite deformation,
and elastic-plastic constituents. The constitutive relations for this
analysis consist of a Mie-Grtineise- ’  equation of state which relate s mean
pressure , density, and internal energy, and a von Mises-type yield

—~cirteria and associated (
~~2) flow rule which govern the s t ress  derivators.

Under the assumption of an adiabatic process and isotropic , homogeneous
constituents, the following mixture theory  was obtained for  composites
with perfect bonds

(a) Continuity:

- 
(~ ) (~ a) ~~a) (aa) (aa) . (aa ) (aa)

~, n I 0 , i a -r ( p  v
3 

)~ 3 ~~
- 

~ 
. (51)

(b) Momentum:

[~~~ -p+S
33

)~~~J, fl
(
~~P D~~

a) V~~~ _ ( 1)a+I p , (51a)
where

r a (aa ) (a)1
(-p+S 33) fl,

3

I (a)n

a (a) (~ ) (aa) 3 3
- ( —1 )  n B f S~~

3 
= 2 , (51b)

1
(aa)

( 
(a)

~~~D
(aa )

( )+2A~~~( ) D~~~ ( (
.

)
(aa)

( ) (Sic)
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(c) Energy:

~~~j a)E p
(aa)

D
(aa)

e
(
~aL (_p+53 

(..1)a+IR , (52a )

R = (-p+S )( I a)
fl

( l )
f
( la)  

. (52b)

(d) Caloric equation of state (Mie-Gr ~ineisefl)

(aa) 
- 

(aa) (aa ) (aa) (aa)p = g(p )+r(p )p e . (53)

(e) Stress der ivato r constitutive relations:

(aa) (aa) 4 (aa ) I (~ a) ( I a ) .  ( !a)  1 ( la)
S33 =~~ (v

3 3 -1f ) S
98 

= S
rr 

= -~~S33 
(54a)

:
(2a)

s
(2a) 

- ~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
, (54b)

— (S~~~~+S~~~~) , 
. 

- 

(54c)

where 2
Aaa) 

= 0 if ~(aa) 
<.~ ~~~ or D a)4~~

) 
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-

- 

= 
3 
~

(a)2r5(:a) (
~

a) +5(~
a)

i
(aa)

j if D
a)

J~~
a) 

~ 0 

-

and ~ (aa ) 
= 

~~(r ;)_ 
. . (54d)

(I) Interface stress match:

(_p+S
rr

)( la)
(x

3
, t) = (-P+S )(Za) (X t) . (55)

(g) Volume fract ions:

( Ia )  (1) (1) ( l a)  ( 1) (2)
n = n f , n +n = 1 . (56)

(h) De fini t ion of averages :

( 1)
1 1 %

~ 
~~~ a 2 ~ 2~ r ( )~~‘dr , (57a)

56 



(2)
( )(2a)  

E 2 
1.r Znr(  )~

2
~dr . (57b)

(2) (1) ( 1)
ir(r -r ) r

- . . (aa)-
The dependent vartable s above number 14. These are ri , p

v~~a) , p(aa ) , ~~~a) and e(aa)(o~~1, 2) . The foregoing represent  volume
fraction ,den sity,  velocity component in the x3-direct ion, stress deviator
component in the x3-direct ion , and internal energy,  respect ively.
Equations (5 1) - (56 )  constitute 14 independent relations for the above
unknowns. The independent va r i.ables , which were ori g inally r , 9, x3, t
(see Fig. 13), are now x3, t onl y. All equations are written in an
Eulerian descr iption. It should be noted that a = 1 r e fe r s  to the fiber
while c i Z  denote s the matrix.

In an e ffort  to test the validity of the f i r s t -order mixture theory,a
comparison was made between calculations perfo rmed us ing the quasi-
one-dimensional mixture equations , and a formal two-dimensional
solution of the concentric cy linders problem. The mixture  solutions were
obtained by writing (50-56) in finite difference fo rm and solving

• simultaneously for the 14 dependent variables. The necessa ry  numerical
analysis and the resulting code is described in [24]. The two-
dimensional solutions were generated using a well-known Lagrang ian
finite ~L~!erence compute r code called CRAM [25]. A typ ical cell of a
quartz-phenolic composite occupy ing the half-space x3 < 0  was selected
for study. For computation in the range 0 � p � 30 K bar a Mie-
Griineisen relation of the form

(aa) 3 (a) (a) (a) (aa) (aa) (a) (aa) (a)
p = !~ H. y~ +G f ~ e , 77 p /P(1) 

1 , (58)
i= 1

(a) . . - (a)was used , where P(j ) denote s the tnltlal densLty of mate r~al a, and H~da) are material constants. The constituent material propertie s
employe d in all calculations are g iven in Table 2. Quiescent initial
conditions were assumed. Boundary conditions consisted of a particle
velocity of 0.5cm /~.L sec of 1.0-s sec duration applied uniformly to both
const itu ent s at x3 = 0.

A comparison of mixture theory and two-dimens ional finite dif-
ference code predict ions of averaged constituent particle velocity as a
function of time is illustrated in Fi gs. 14, 15. The two-dimensional code
prediction, wh ich resolve s the particle velocity d is t r ibut ions  in the
radial direction, where averaged according to (57) in order to provide
direct comparisons with the mixture theory. Resul ts  a re  shown for a
propagation (x3-d irectiori) distance of 0.5cm. Agreement between the
finite d i f fe rence  and mixture  theory  calculations is jud ged to be excellent.
Finally, it is noted that on the same computer (aUNIVA C 1108), the CRAM
calculation requi red roughly 500 time s the computer time needed for the
equivalent mixture calculation.
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Table 1. The Experimental Conf igurations. *

Proj ectile
Composite

Experiment thickness Velocity Thickness
No. (cm ) Material (cm/ I.isec) (cm)

• i i 0. 820 Aluminum 0.001355 1.634

2 0. 776 Aluminum 0.001420 1. 631

3 0. 806 Aluminum 0.001144 1. 571

4 0. 80 3 PMMA 0.002 118 0.691

5 0. 805 PMMA 0. 003078 0. 694

6 0.812 Tungsten 0.001289 0. 975
Carbide

7 0.810 Aluminum 0. 001330 0. 656

8 0. 809 Aluminum 0.001066 0. 164

* In all experiments the buffer plate was 1 cm thick. The bond
thicknesses were all less than 0.0002 cm thick.

1 Experiment 1 exhibited excessive flyer tilt and Drurnheller and
Lundergan considered the data useless. 

-
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Table 2

Material Propert ies  used in TINC and CRAM Calculations

Material I Material 2

Initial Density p~~~~(g /cc)  1.85 1.29

Shear Modulus, ~.~~~~ dynes/crn 2 ) 106 .0( 1O~~) 30•3(10 e )

Bulk Modulus , H~~~
)

(dynes/cm 2 ) 397. 6 ( l 0~~) 96.O( 10~~)

H
(
~~~(dynes/cIn 2 ) 38. 0 (l 0~ 1) 0

H~~~~(dyn es/ cxn2) 275.0 (1011) 11.3(1011)

Mie-Gr~ineisen Ratio, ~~~~ . 32 • 52

Yield Stress in Simple Tension
Y
(
~~~(dynes/cm 2) 2.75(10~ ) 1. 33 (l0~ )

Radial Fiber Radius , r 1 (cm) 0.08

Outer Cylinder Radius r (cm) 0. 20
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TABLE 3

MATERIA L PROPERTIES USED FOR COMPUTATIONS

— ( 1)
Thermal Conductivity Ratio (2) = 50

k
— ( 1)

Specific Heat R at io -( 2) = 0.5

• Volume Fractions n 1 
.2 (Fiber),  n

2 
= .8 (Matrix)

- 
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